Optimizing Device Operation with a Local Electricity Price

Bruce Nordman, Mattia Bugossi Lawrence Berkeley National Laboratory April 10, 2014

> BNordman@LBL.gov — nordman.lbl.gov MBugossi@LBL.gov

Creating a local price

Context: stand-alone system of local photovoltaic (PV) power and a battery

- The local price tracks power availability
 - lowest when PV output is highest

Slide 3 of 23

How the simulator works

- System components
 - Freezer
 - Refrigerator
 - PV Source
 - Battery
- 2 simulations
 - Constant price
 - Variable price

Battery Freezer (or refrigerator)

Introduction

- Always important to make best use of electricity resources - generation, storage
 - Especially in energy access context
- Need to balance supply/demand
- Hypothesis:
 - Price is essential to doing this
 - Prices should be local
 - Local price can be used to shape demand to better match it to supply

Slide 2 of 23

Purpose of project

- Explore/Apply the concept of "Local Power Distribution"
 - "Local Power Distribution with Nanogrids", Bruce Nordman and Ken Christensen 2013 (first proposed May, 2010)
- Explore the behavior of a device that controlls itself with the current and forecast "local price" of electricity
- · Quantify benefits
- Not try to create *best* system

Slide 4 of 23

How the simulator works

PV Price/ Device Device Forecast = Setpoint **Behavior**

- Process a series of steps
- Each step as simple as possible
- · "Layered approach"
 - like Internet technology
- · Complexity contained

Freezer — Constant price

- Constant setpoint (-10 C)
- Compressor on-times and off-times about 20 minutes each
- Behavior never varies

Slide 7 of 23

Device operation

- Price is current price plus forecast (24-hour)
- Price can change any time
- Forecast determines setpoint changes
- Device stays within 0.5 C of setpoint
 - Compressor on: until 0.5 C below
 - Compressor off: until 0.5 C above

Freezer range: -3 C to -18 C (-10 C nominal)

(3 C nominal) Refrigerator range: 1 C to 6 C

Refrigerator like freezer except less interesting

Freezer — Variable price (6 hours)

- · Variable compressor on-times and off-times
 - (10 minute minimum on-times)

Slide 9 of 23

Freezer — Variable price (24 hours)

Slide 10 of 23

Multiple device results

10 Freezer (24 hours) - Power Consumption Distribution key parameters randomized

Slide 11 of 23

Consumption vs. PV output

Results (kWh/day – 15 units)

More Direct PV; Less Battery; Less Loss

Freezer		Refrigerator	
Const.	Var.	Const.	Var.
25.1		15.5	
8.6	12.8	5.4	7.5
34%	51%	35%	48%
49%		37%	
16.4	12.2	10.1	8.0
4.2		2.1	
-26%		-21%	
1.64	1.22	1.0	8
0.42		0.21	
	Const. 25 8.6 34% 49 16.4 4. -26 1.64	Const. Var. 25.1 8.6 12.8 34% 51% 49% 16.4 12.2 -26% 1.64 1.22	Const. Var. Const. 25.1 15 8.6 12.8 5.4 34% 51% 35% 49% 37 16.4 12.2 10.1 4.2 2. -26% -21 1.64 1.22 1.0

Slide 14 of 23

More complex systems possible

- Simple
- · Generic
- · Works with networks of grids

Slide 15 of 23

What is a Nanogrid?

"A small-electricity domain" simple

- · Like a microgrid, only smaller / less complex
- Has a single physical layer (voltage; usually DC)
- Is a single domain:
 - administration, reliability, quality, price, capacity
- Can interoperate with other (nano, micro) grids and local generation through gateways
- Wide range in technology, capability, capacity

Controller Storage (optional)

Slide 16 of 23

Image from Eric Brewer talk

Village example

- Start with single house car battery recharged every few days
- Light, phone charger, TV, ...
- Add local generation PV, wind, ...

Village example

- · Start with single house car battery recharged every few days
 - Light, phone charger, TV, ...
 - Add local generation PV, wind, ...
- Neighbors do same
- Interconnect several houses

Village example

- Start with single house car battery recharged every few days
 - Light, phone charger, TV, ...
 - Add local generation PV, wind, ...
- Neighbors do same
- Interconnect several houses
- School gets PV
- More variable demand
- Eventually all houses, businesses connected in a mesh
- Can consider when topology should be changed
- Existence of generation, storage, households, and connections all dynamic

Slide 19 of 23 Slide 20 of 23

Village example

• Start with single house – car battery recharged every few days

- Light, phone charger, TV, ...

- Add local generation PV, wind, ...
- Neighbors do same
- Interconnect several houses
- School gets PV
- More variable demand
- Eventually all houses, businesses connected in a mesh
- Can consider when topology should be changed
- Existence of generation, storage, households, and connections all dynamic
- Can later add grid connection(s)

From **no electricity** to **distributed power** – skip traditional grid; Similar to **no phone** to **mobile phone** – skip landline system

Slide 21 of 23

Technology issues

Features / characteristics:

- Flexible
- Easy sharing
- Safe
- Optimal
- Inexpensive

Must be:

- · Digitally managed; plug-and-play
- Networked
- Same everywhere

Slide 22 of 23

Thank you

Nanogrid benefits

- Bring individual devices into grid context
- Pave way for Microgrids
 - Increase microgrid utility; enable local microgrid prices
 - Reduce microgrid cost and complexity
 - Can scale/deploy much faster than microgrids
- Enable "Direct DC" (~10% savings)
- · Better integrate with mobile devices, mobile buildings
- Address Energy Access context
- · More secure
 - Coordinate only with immediately adjacent (directly attached) grids / devices
 - No multi-hop "routing" of power
- · Enable local reliability at low cost

Slide 24 of 23

Nanogrid conclusions

- · Nanogrids can optimally match supply and demand
 - Price: internally and externally
- Nanogrids can be key to success of microgrids
 - Can be deployed faster, cheaper
- Need to be standards-based, universal
- Key missing technologies: pricing and gateways
- Nanogrids are a "generally useful technology"
 - Like Internet

Slide 25 of 23